Fuzzy fractional differential equations with Nagumo and Krasnoselskii-Krein condition
نویسندگان
چکیده
In this paper, we consider two new uniqueness results for fuzzy fractional differential equations (FFDEs) involving Riemann-Liouville generalized H-differentiability with the Nagumo-type condition and the Krasnoselskii-Krein-type condition. To this purpose, the equivalent integral forms of FFDEs are determined and then these are used to study the convergence of the Picard successive approximations.
منابع مشابه
A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.
متن کاملHybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method
In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.
متن کاملThe fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کاملDIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING FUZZY FRACTIONAL HEAT EQUATIONS
In this paper, the differential transformation method (DTM) was applied to solve fuzzy fractional heat equations. The elementary properties of this method were given. The approximate and exact solutions of these equations were calculated in the form of series with easily computable terms. The proposed method was also illustrated by some examples. The results revealed that DTM is a highly effect...
متن کاملA Fuzzy Power Series Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power series in the Caputo derivatives sense. To illustrate the reliability of method some examples are provided. In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power...
متن کامل